Tutorial 7

In the following problems, V is a finite-dimensional vector space over a field \mathbb{F} unless otherwise stated.

1. Suppose V is an inner product space and $T \in \mathcal{L}(V)$ is self-adjoint. What can you say about the generalized eigenspaces of T ?
2. Let $\mathbb{F}=\mathbb{C}$. Suppose $T \in \mathcal{L}(V)$ and $c \in \mathbb{C}$ are such that $T^{2}-c^{2} I$ is nilpotent. What can you conclude about c ?
3. (8.A.3) Suppose $T \in \mathcal{L}(V)$ is invertible. Show that for all $c \in \mathbb{F}$ nonzero,

$$
G(c, T)=G\left(\frac{1}{c}, T^{-1}\right)
$$

4. (8A.9) Suppose $S, T \in \mathcal{L}(V)$ are such that $S T$ is nilpotent. Prove that $T S$ is nilpotent.
5. Suppose $S, T \in \mathcal{L}(V)$ are commuting nilpotent operators. Show that $S+T$ is nilpotent.
6. Suppose $S, T \in \mathcal{L}(V)$ are nilpotent and that there exists $u, v \in V$ such that $S^{n-1}(u)$ and $T^{n-1}(v)$ are nonzero, where $n=\operatorname{dim} V$. Show that S and T are similar.
7. Let $V=\mathcal{P}_{n}(\mathbb{R})$ with $n \geq 1$ and $T \in \mathcal{L}(V)$ be the differentiation operator. Show that T does not have a square root, i.e. there does not exist $S \in \mathcal{L}(V)$ such that $S^{2}=T$.
8. Let $T \in \mathcal{L}(V)$ be a linear operator and $U \subseteq V$ be a T-invariant subspace of V. Suppose $\mathbb{F}=\mathbb{C}$ and T has eigenvalues $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$. Define

$$
U_{i}=U \cap G\left(\lambda_{i}, T\right)
$$

for each $i \in\{1, \ldots, k\}$. Show that

$$
U=\bigoplus_{i=1}^{k} U_{i}
$$

